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The high wavenumber instabilities of a Stokes wave 

By DIETER E. HASSELMANN 
Meteorologisches Institut der Universitat Hamburg, Germany 

(Received 17 July 1978 and in revised form 12 December 1978) 

A stability analysis for high wavenumber perturbations of a Stokes wave of wave- 
number k,  and slope e is presented. Except for a correction term the governing 
equation is shown to be of Hill's type. The analysis predicts instability a t  wave- 
numbers k, = t ( m  + 1), k,. The two lowest and strongest instabilities are the Benjamin- 
Feir instability a t  m = 1, and the quartet resonance a t  m = 2. Both are incorrectly 
treated by the present method. For m 2 3 the analysis should be asymptotically 
(E+ 0) correct, yielding instability O(em) due to m-fold Bragg-scattering. The non- 
resonant perturbations behave as predicted by WKBJ theory. The instability is too 
weak for experimental detection; numerical tests should be possible, but are not 
available a t  present. 

1. Introduction 
We shall consider the interaction of short gravity waves with wavenumber k ,  riding 

on a Stokes wave with wavenumber k,. All motion shall be irrotational on an ocean 
of infinite depth and horizontal extension; surface tension will be neglected. Only 
the case k, parallel to k, will be studied. 

The Stokes wave shall have small but finite slope e = k,A,  (we have E 5 0.1 in 
mind) ; the short wave shall have infinitesimal non-dimensional amplitude e2 = k,  A,. 

We present a stability analysis for the short waves, linear in E , ,  but formally retain 
all powers in 6 .  Due to subsequent expansions in E the theory is nevertheless only 
asymptotic (e-t 0). The relevant parameters of the problem are E and a2 = k l / k z  and 
our approximations require a < 0-5. 

The results are identical with WKBJ predictions (Garrett & Smith 1976) unless 
k, = a(m + 1), k,, where m-fold Bragg scattering occurs, since 

)(m + 1)2 - B(m - = m (1.1) 

and +(m+ l ) + * ( m -  1 )  = m. (1.2) 

The resulting instability is O(P). 
Atm = 1 andm = 2 the Benjamin-Feirinstability (Benjamin & Feir 1967; Benjamin 

1967) and the quartet resonance (Phillips 1960, 1961 ; Bretherton 1964; Hasselmann 
1962) are predicted but details are qualitatively (m = 1) or quantitatively (m = 2) 
incorrect. 

Since the instabilities for m >, 3 and E < 0.3 are too weak for experimental detection 
the main purpose of this paper is to guide numerical calculations (Longuet-Higgins 
1978a, b )  to the most promising areas in the E ,  a plane. We scale lengths with krl  
and time with ri1 = (k, g)-*, thus g is scaled to unity, g = 1. 
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R, and R, are the frames of reference in which either the water at depth (R,) or the 
Stokes wave is a t  rest. Frequencies are Q in R, and w in R,. The Stokes wave pro- 
pagates ‘forwards’ in R,; y is positive upwards. 

2. Formulation and reduction of the problem to standard form 
In  R, the wave height cl of the Stokes wave is given as 

c1 = € c o s x + ~ € 2 c o s 2 x + o ( @ )  (2.1) 

and for the potential q51 and the streamfunction 7,b1 see Lamb (1879, 8 250). With the 
phase velocity /3 = (1  + $e2) + O(e3) we introduce orthogonal co-ordinates 

c = -q51/P (2.2) 

and 7 = I J P  (2.3) 

7 - E,W2(5, t )  = 0 (2.4) 

and 9 = 91+ E 2 9 2 ( c ?  79 % (2.5) 

so that ql(c,q) = q51(r, y) = -/36 and the surface is 7 = 0. An infinitesimal perturba- 
tion is then described by 

and the perturbation equations linear in e2 are obtained as 

U’2, t + J ( P w 2 , *  - T2,TJ = 0 (7 = 0); 

9 2 ,  t - J P 9 2 . 6  + BP”q w2 + Yq w2 = 0 (7 = 0) ;  

(2.6) 

(2.7) 

cp,,,-+O for r+--co; (2.8) 

and 92,&+ 92,q’I  = 0; (2.9) 

where (2.10) 

(see also Longuet-Higgins 1978a, b ) .  

by the three %-periodic functions 
The coupling of the perturbation to the Stokes wave is thus completely described 

J(L7 = 01, q<J/ = O ) ,  Y & - 7  = 0). (2.11) 

This is the principal advantage of our transformation. 
We shall seek eigensolutions of the form (CT, = k t ) ,  

w2(e, t )  = exp rw, c - w2 t)l m-) (2.12) 

and cr2 (5 , r , t )  = exp [ ~ ( ~ 2 f ; - ~ , ~ ) I e x P ( ( k 2 l 7 ) ~ , ’ G ( 6 ,  7) (2.13) 

with F(5)  = m+ 27.4 (2.14) 

and G(6, 7) = 2n, 7). (2.15) 

We consider only k ,  > 0, since the case k, < 0 can be obtained by conjugation. 
From (2.8) and (2.9) we have 

+a, 

n=-ca 
exP(Iknl7)G = c B,exp(in,f;)exp(ln+k,lr). (2.16) 
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We introduce EG by G, = -iGt+EG (q = 0). (2.17) 

Inserting (2.12) and (2.13) into (2.6) and (2.7) we obtain, except for the term EG, a 
second-order ordinary differential equation with periodic coefficients for 

G(5) = G(&r  = 0). 

By standard procedures (see the appendix) this is reduced to a variant of Hill's 
equation 

(2.18) 

where u = 25 and a,(u) = a,(u; a, E ,  A) with 
+ az(u) G,(u) = Ez G,, 

A = (% + k,P)/% = W% (2.19) 

and a&) = a,(-u) = a,(u+n). (2.20) 

(2.21) 

where p = rlL(%E, A) (2.22) 

Further with G,(u) = G(5) 
= ex?? ( -  +-4:G,(u) +), 

and P ( u )  = P(u + m). 
Finally E, G, is a transformed form of EC: and will be neglected (see $4). 

can be determined from (2.18), thus with (2.22) 
The condition G,(u) = G,(u + m) determines A since the characteristic exponent v 

v(a ,  E ,  A) +p(a, e ,  A) = 2n. (2.23) 

The theory is easily evaluated O ( E ~ )  and results will only be presented near the excep- 
tional points, since only here do we find deviations from WKBJ results. These 
asymptotics E + 0 may be quite misleading at  values of, say, E z 0.4, where J(6 ,  7 = 0) 
nearly vanishes at 5 = 0. 

3. Eigenvalues and eigensolutions 
To second order 

p = (1 - 2A/a) + e2(2/a2 - A/.) + O(s3) 

a2(u) = a - 29, cos 2u - 29, cos 4u + O(e3), 

u = (2 /01)~  {( 1 - c ~ A  + $az) (1  + 4s') - +ae2(A - a)> + 0(c3), 

q1 = - 2E(U - 1) + O ( E 3 )  

(3.1) 

(3.2) 

(3.3) 

(3.4) 

and 

where 

and 9, = O ( E ~ )  is not needed, unless Ja z 2 or m = 2. We shall here consider m 2 3 
only. A t  E = 0 we have v = k 2/a which yields eigenvalues 

AL*) = { k (k, + n)t - (k, + n) + k,} /kb (3.5) 

corresponding to wavenumbers k,  = k,+n, see (2.19). (Due to E,G, (3.5) cannot be 
extended to k,+ n < 0. In this case consider t%, = N - A k ,  where k ,  = N + Ak and 
0 < Ak < 1 . )  The exceptional points lie at v = m, J a  = m and for E =+ 0 we expand 
around these, v = m + Ail, p = m + Ap,  a = m2 + Aa. With a standard approximation 
for cosm (Meixner & Schafke 1954, p. 124) we obtain 
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FIGURE 1. The p, v dispersion relation near resonance (m  = 3).  With v and p given by (3.6) and 
(3.7), B by (3.10) and a - A  = - 4 m A a , - 4 ( R , - ~ . , ) + 2 ~ 2 ( m ~ - & n + + )  the intersections PI and 
p, determine R, - U, for given CT, and E.  For E + 0, PI is associated with the forward propagating 
wave at k, while P ,  corresponds to the backward travelling wave at k ,  - VL. With increasing E 
coupling yields instability O(em) if B lies in the shaded interval of length S = O(sm). At the tangent 
points near C and S the unstable Eolutions show cos gmx and sin +mx amplitude modulation. 

B = as2(m - 1)2- 2(m + 1) Acr,, (3.10) 

A o , = $ ( m + l ) - c r ,  and 0 2 = k i .  (3.11) 

While (3.6) with (3.9) have been strictly derived only for the Mathieu equation, 
with 2, = a",(€) given by the intersection of a = a,(ql) with q1 = €(a - 1) - in standard 
notation for Mathieu's equation - to the order given the same solutions (for m 2 3) 
will hold for Hill's equation, except that Sin (3.9) could possibly be smaller, S = O(eN) ,  
N > m. While possible, this would require a delicate balancing of higher-order terms 
and would in view of what is said in the introduction appear as an unlikely coincidence. 

Av+A,u = 0 (3.12) 
is sketched in figure 1 for m = 3. 

At PI and e = 0 we have A, = 1, k ,  = l/a2 and a t  P,, A, = - 1, L, = E ,  - m, where A, 
indicates that E 2  instead of E ,  has been used in (2.19). The eigensolutions for 8 $: 0 
a t  Pl and P, are obtained as 

The equation 

= me&; !ll(Pl)), 

v1 = m+Av,, v l+p = 0 at P,, (3.13) 

and as G,(U) = me-(m-AvJ4 = mem-A"*( - u), 

v2 = m + Av2 - 2m, v2 +p = - 2m, Av, -= 0 at P,. (3.14) 
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For Hill’s equation we should replace the me, by he;(u, E )  the solutions of our particular 
Hill (Stokes) equation. For the A values we find (valid also away from the exceptional 
points) 

andat P2 €2 ii, = - l+ - - { l+O( l /a ) }  (3.16) 

in agreement with results obtained by Longuet-Higgins & Phillips (1962) for e < a2, 
and recently numerically confirmed [Longuet Higgins 1978a, see his equation (7.4)]. 
For IBI < Bi = 46 (1 - l/m2)4 or 

(3.17) 

A becomes complex and we have instability. A t  the onset of instability 1 BI = Bi, the 
eigensolutions and eigenvalues a t  Pl and Pz are identical in the limit PI+ Pz and a 
second linearly growing solution appears. Associated with the instability is a very 
rapid change in the eigensolutions: The me, u pass from me, u z ei”u for IBI - Bi 9 6, 
over 2*ce,u for Pl = C to -i24semu for Pz = S, back to eivu for B < 0 (IBI - Bi) % 6. 

A uniformly valid approximation describing quantitatively how the me, pick up the 
Bragg-scattered component as Au2 - d(E) changes sign has not been obtained, but 
the considerations above suggest that the Bragg-scattered component is large only in 
a range 

Ag2 = d ( € )  26, (3.18) 

where is = O ( P ) .  (3.19) 

4. The influence of the term E 

if our solutions have negligible contributions at negative wavenumbers. 

nt > 1 we assume that our eigensolutions have Fourier amplitudes of unity at  

We cannot say much about the effect of E ,  except that its effect should be negligible 

Clearly E is an important term in the Benjamin-Feir instability a t  m = 1. For 

k = a(m+ 1)2  and k = )(m- 1)2 

tapering off by one power of e for each coupling step to either side. (This is a crude 
description for m2e 9 1, but in this range the term E is certainly negligible.) If then 
the first negative wavenumber reached by coupling has a Fourier component O(sn) 
the feedback into E = a(m - 1 ) z  will be O(e2n) and our stability analysis not obviously 
inconsistent with our approximation E = 0 if 2n > m. At m = 2 we find n = 1 and 
thus we expect our analysis to be qualitatively but not quantitatively correct, since 
not all terms O(e2) are included. At m = 3 we find n = 3 and thus we expect our treat- 
ment to be asymptotically correct for E -+ 0 and m >, 3, or a < 2/(m + 1) = 3. 
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5. Comparison with the numerical results of Longuet-Higgins (1978a) 
The agreement between the analytical and numerical results for A has already 

been discussed by Longuet-Higgins. Except for one pair all of his calculations lie well 
outside the regions (3.18), and his eigenfunctions behave according to WKBJ pre- 
dictions. Of particular interest is the pair a t  (k, = 4, Q > 0 )  and (k, = 1, s1 < 0) 
(n = 4 and-n = - 1 in Longuet-Higgins’ notation), associated with m = 3. Neither at 
n = - 1 nor a t  n = 4 is there any indication of instability in the computed eigen- 
frequencies or any noticeable admixture of the Bragg scattered component in the 
eigensolutions a t  E = 0.2. While a strong contribution from n = - 1 might be difficult 
to see at n = 4, a strong component of n = 4 to the solution at n = - 1 should be easily 
detectable. From (3.18) and (3.19) this result is not in disagreement with our admit- 
tedly vague estimates. With Au, = 0, the relevant difference is 

]ACT, - d(s)  I = ( 5 4  

8 = o ( E 3 ) .  (5.2) 

and is presumably large compared to 

These vague comparisons clearly show the need to obtain a quantitative grasp on 
6. Until this has been obtained a conceivable way of testing the theory would be t o  
run several computations a t  a fixed E ,  in fact a smaller value, say E = 0.1, would be 
more convenient, and to cover the range, say near m = 3, 

uz = 2 - i.2 5 0(€3). (5.3) 

The detection of the instability should be possible in a numerical calculation, but 
even more striking should be the rapid change in the eigenfunctions, which could best 
be demonstrated by plotting amplitude and phase of the Fourier components at 
k, = k, + n against n. 

Alternatively one could hold r ~ ,  fixed at  2 - $E: for E,, = 0- 1 and then vary e. 
If any of these calculations fail to produce the predicted features our theory has 

clearly failed the test. 

6. Summary and discussion 

can be reduced to an equation 
It has been shown that the stability analysis of perturbations on a Stokes wave 

Gi + a2(u, A, B, a) G, = E, G,, (6.1) 

where a,(u, A) is an even 7r-periodic function of u and a linear function of the eigenvalue 
A. E ,  is a complicated operator, but its influence decreases rapidly with increasing 
wavenumber of the perturbation. 

For small values of E (6.1) may be reduced to the Mathieu equation and regions of 
instability for wavenumbers close to k, = $(m+ 1), or a, z m2 are predicted. How- 
ever, due to the influence of the term E ,  the two strongest instabilities O(e2)  a t  m = l 
and m = 2 are not correctly treated, with qualitatively incorrect results a t  m = 1 and 
quantitatively incorrect results at m = 2. For m > 3 we have provided only order of 
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1 la 

FIQ~RE 2.  Stability diagram for perturbations of a Stokes wave (at CL = l),  negative values of 
= f ((kz(/kl)* corresponding to backward running waves. In the shaded area we have in- 

stability. The areas a t  m = 1 are taken from Longuet-Higgins (1978b, figure 6). For m > 1 the 
stability diagram is qualitative a t  best outside of the area enclosed by the broken line, which 
marks the approximate limits of validity of our treatment. Further details are explained in the 
summary. 

magnitude results for the strength and location of the instability, predicting instability 
for 

I kt - [4(m + 1 )  - te2((m - l ) , / ( m  + l ) ]  + O(e3) I = O(em) ; (6-2) 

thus for m > 3 the width is better known than the centre of the unstable region. The 
frequency of the component k ,  in the system R, (in which the water a t  depth is a t  
rest) is 

(6.3) 

Due to Bragg scattering the unstable waves consist of one forward travelling com- 
ponent a t  k, and a backward travelling component at k ,  - m, so that both components 
have the same frequency in the system R, in which the Stokes wave is a t  rest. The 
two components are in phase at  the lower edge of the unstable region (6.2) and in 
antiphase at the upper edge. Thus in R, the waves on the boundaries of the stable 
regions have forms close to 

a, = kt (  1 + E2(ki + O(kF4)) +ikk O ( P ) .  

exp [isk, sin x]. I (cos gmx 
\sin gmx 

w2(x, t )  = t .  exp [i$(m2 + 1 )  x - iw, t ] .  

The last factor in (6.4) describes wavenumber modulation. Inside the unstable regions, 
where we have exponential growth, the waveform is not well understood. If we are 
well away from the unstable regions (6.2) we recover the WKBJ results. 

The areas of instability shown in figure 2 have been constructed from (6.2) with the 
term O(e3) = 0 and the term O ( P )  = em. At m = 2 this is incorrect O(c2) (see the 
remarks after (3.4) and in $4) ,  and, while the qualitative nature of a width 0 ( e 2 )  is 
preserved, the extension of the instability zone to k = 0 for m = 2, is probably an 
incorrect feature. The instability area for each m would be symmetric in a k, instead 
of the i )k,l t  presentation, the area a t  k, w #(m+ 1 ) ,  corresponding to an area a t  
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k, = - (k,-m). The instability areas have been extended to larger values of E than 
covered by the theory in order to show some width a t  larger m. Obviously interesting 
questions concerning the dependence of the instability areas on E for larger values of 
E and on the angle of incidence arise. 

We suggest that numerical computations be concentrated near (6.2), both to obtain 
a test of the theory and also to stay in the areas of most interest. It is possible that the 
higher-order instabilities become more important with increasing E .  Only the term 
E ,  has prevented a unified analytical treatment of all resonances at m = 1 , 2  . . . , and 
has thus not allowed us to see whether these resonances share common features. 

Thanks are expressed to D. Olbers and K. Herterich for helpful discussions, to 
Prof. Longuet-Higgins for sending his manuscript prior to publication and to an 
anonymous referee for numerous suggestions. This research was supported by Deutsche 
Forschungsgemeinschaft through a grant to SFB 94. 

Appendix 
From (2.6) and (2.7) 

where 

and 

and 

we transform (A 2) to (2.18) (Bellman 1964), where 

G,(u) = Gl(u) exp [ - iB(u)] R,*, 

8 1 
E2Gz = -,exp[-iO(u)]-El(a)Gl, 

P R! 
and 

where E,(a) is the operator which maps 
f (u) = x f n  eiAu @nu 

E l f  = x jn  e i ~ u  e2inu 

n 

onto 

( ih+n)fn for i h + n  < - l/a2, 
0 otherwise. 
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R,(U) = i - 2~ C O ~  2u - 2€2 cos 4u + 0 ( € 3 ) ,  

= 26 COS 2u + 4€2 Gos 4% + €2 + 0(€3),  

8(u) = pu + 8, e sin 2u + O2 @sin 4u + O(e3), 

499 

To second order (A 14) 

(A 16) 

(A 16) 

and 

o,=-(y-;)+o(€2) 2 
a 

'3, = - $ ( l - A c z + ~ ) + O ( e ) ,  

and in (3.2) q2 = - E2(5a - 7)  + o(63). (A 19) 

For Hill's equation see books (Arscott 1964; Ince 1926; Whittaker & Watson 1927). 
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